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THE EXISTENCE AND STABILITY OF SOLUTTONS TO KONLTNEAP
OPERATOR DIFFERENTIAL EQUATION
by

C. V, Pao

Department of Mathematics
University of Pittsburgh
Pittsburgh, Pennsylvania

ARSTRACT

The existence and the stability problem of the operator
differential equation Q%éEl = Ax(t) (t > 0), where A is a
nonlinear operator with domain ND(A) and range R(A) both in a
complex Hilbert space H, are investigated by using the nonlinear
semi~grour rropertv. Under the conditior R(I ?‘A) = Y, A generates
a nonlinear contraction (resp. negative contraction) semi-groun
iff A is dissipative, that is, -A is monotone (resp. strictlv
dissipative) from which the existence, uniqueness and stability
or asymptotic stability of solutions are insured. By the intro-
duction of an equivalent inner product inducing a topologically
equivalent Hilbert space, the inmer product of I'" with respect to
which A is dissipative can be replaced by an equivalent inner pro-
duct without affecting the existence and the stabilitv of a solution.
This fact makes possible the development of a stability theorv by
the construction of a "Lyapunov functional" hy means of a sesquilinear

functional.



1., Introduction

Consider the nonlinear operator differential equation

dx(t)
dt

where the unknown x(t) 1s a vector-valued function defined on

= Ax(t) (t > 0) (1-1)

[0, ) to a complex Hilbert space H and A is a given, in general
nonlinear, onerator with domain N(A) and range R(A) both contained
in I, The object of this pamer is to develop criteria for the
stability and asymptotic stability as well as the existence and
uniqueness of solutions of (1-1), The existence problem of (1-1)
has been investigated by Komura [6], Rato [5] and by Browder [1].
The results of [5] by Kato have a close connection with this 5aner.
The stahbility and asymptotic stability properties of the
solutions of (1-1) are developed in terms of nonlinear contraction and
nonlinear negative contraction semi-proups (see definition 2.1) since
1f A is the infitesimal generator (see definition 2.2) of a nonlinear
semi-group {Tt;t > 0} then a solution of (1-1) starting at t=0 from
xosD(A) is given by x(t; xo) = T.X, for all t > 0 with x(0; xo) =X,
and thus the stability property is ensured by the contraction or nega-
tive contraction property of the semi-group {Tt; t > 0}, By the intro-
duction of an equivalent inner product inducing a topologicallv eauival-
ent Hilbert space (see definition 3.1), the stability property is related

to the existence and the construction of a "Lvapunov functional" which

* This paper is a part of the author's doctoral dissertation, University
of Pittsburgh, Pittsburgh, Pennsylvania, 1968, supnorted by NASA under
Grant Number NGR 39-011-039, The author acknowledges his gratitude
towards his advisors Prof. G, Laush and Prof. W. G. Vogt for their many
valuable suggestions.



is defined by means of a sesquilinear functional having certain
specific properties. In section 2, conditions on the operator A

for the generation of a contraction semi-groupr or a negative contrac-
tion semi-group in a Hilbert space H are estabilshed. The essential
condition on A is the dissipativity of A (or equivalently, the
monotonicity of -A) with respect to the inner product of H. In
section 3, we show that the inner product with respect to which A

is dissipative or strictly dissipative can be reprlaced by an equi-
valent inner product without affecting the existence and stability
provertv of a solution. We also estahlished the necessary and
sufficient conditions for the equivalence between two inner nroducts.
In the final section, we developed a stabilitv theorv, including the
existence of a solution, through the construction of a "Lvapunov
functional" which is in parallel to the Lvapunov stabilitv theorv of

ordinary or partial differential eauationms.
2. MNonlinear Semi-group and Dissipative Onerator

Definition 2.1, Let B be a Hilbert space, The familv of

nonlinear operators {Tt; t > 0} is called a nonlinear semi-

group on H if and only if the following conditions hold:

(1) for anv fixed t > 0, T, is a continuous (nonlinear)
onerator defined on H into Hj;
(ii) for anv fixed x ¢ H, Ttx is strongly continuous in t:

(1ii) T.T, = Ts+t for s, t > 0, and To=I (the identity
operator);
(iv) ]thx-Ttvl! < Ml |x-y]|] ™M > 0) x,v, € H and t > 0.
If (iv) is replaced by

Me-etl'x“Yll (8>0) x,v, € Hand t > 0,

A

(1v)" llr;x—Ttyll



then it is called a nonlinear negative semi-group on H.

If M < 1 then {Tt; t > N} is called a nonlinear contraction and
negative contraction semi-group respectively, The supremum of all
the numbers B satisfying (iv)' is called the contractive constant

of {Tt; t > 0}, For a subset D of M, the familv {T ;

g3 b2 N} 1is said

to be a nonlinear contraction (resp., negative contraction) semi-
group on 7 if the properties (i)-(iv) (resp.,(i)-(iv)') are satisfied
for all x,v ¢ D (with Mg 1).

Definition 2.2, The infinitesimal generator A of the nonlinear

semi-group {Tt; t > 0} is defined by

w-lim THZX

Ax = 4o h
for all x € H such that the Iimit on the right-side exists in the sense

of weak convergence.

Definition 2.3. An operator (nonlinear) A with domain D(A)

and range R(A) both contained in a Hilbert snace 1s said to be
dissipative if
Re(Ax = Ay, x-y) < 0 for all x,v ¢ D(A); (2-1)
and it is said to he strictly dissipative if there exists a real number
8>0 such that
Re(Ax - Ay, x-v) < -B(x~v, xX=-V) for all x,v € D(A).
(2-2)
The supremum of all the numbers B satisfving (2-2) is called the
dissipative constant of A,
It follows from definition 2.3 that A 1s dissipative if and
only if -A is monotone (cf. [8]) ané that definition 2.3 coincides

with the usual definition of dissipativity when A is a linear ovnerator



(ef. [7]1). It can be shown that the condition (2-1) implies that
(1 - GA)_l exists and is Lipschitz continuous for alla > O, where
I ~aA 1is an operator with domain ND(A) which mans x into x - 2 Ax}
and in addition, if the domain of (I -'xA)”l is 1 for somea > O
then the same is true for alla > 0 (cf. [5], [9]1). Thus for a
dissinative operator, the operator (I --cLA)-1 has domain F either
for everva > 0 or for noa > N, In the former case A is said to
be m-monotone,

The following definition specifies what it meant by a
solution in this paper.

Definition 2.4, By a solution x(t) of (1-1) with initial

condition x(0) = x € D(A) in a Hilbert space H (real or complex),
we mean the following:
(a) x(t) is uniformly Lipschitz continuous in t for each
t > 0 with x(0) = x.
(b) =x(t) € D(A) for each t > 0 and Ax(t) 1is weakly continu=-
ous in t.
(c) The weak derivative of x(t) exists for all t > 0 and
equals Ax(t).
(d) The strong derivative dx(t)/dt (= Ax(t)) exists and is
strongly continuous except at a countable number of
values t.
The ahove definition of a solution x(t) is in the sense of a
weak solution since x(t) satisfies (1-1) in the weak topology of H,
However, by the condition (d), x(t) is an almost everywhere strong
solution in the sense that x(t) satisfies (1~1) for almost all values
of t > 0 in the strong topology of H, The following theorem is

essentiallv due to Kato [5].



Theorem 2,1, Let A be a nonlinear operator with domain D(A)
and range R(A) both contained in a Hilbert space H such that R(T-A)=H.
Then A is the infinitesimal generator of a nonlinear contraction semi-
group {Tt; t > 0} on D(A) if and only if A is dissipative (i.e. -A is
monotone).

Proof. Sufficiency: suppose A is dissipative, (i.e. =-A is
monotone), Then -A is m~monotone, for by hvpothesis, R(I+(~A)) =
R(I-A) = H, The sufficiency follows from the main theorems in [5]
since both H and 1its conjugate space are uniformlv convex.

Necessitv: Let A be the infinitesimal generator of a non-linear

contraction semi-group {Tt; t > 0} on D(A). Then for any x,v ¢ D(A)

Re(h_l(ThX~X)-h'1(Thy-y). X=y) = h'lRe[(Thx-ThV. x=v) = (x=y, x~y)]

A

W - 1yl ] ey l] = eyl 120 = 58 ey |10 7 net, w1 | =

- llx=yl]1 <0
for all h > 0 since {Tt, t > 0} is contractive. Letting h+0 in the
above inequality, we have, by the continuity of inner product and by
definition 2,2
Re(Ax - Ay, x-y) < 0 for anv x,v € D(A).
Hence the theorem is proved.

Remark. The nonlinear contraction semi-group {Tt; t > 0}
generated by A in the above theorem has all the properties of a
solution in the sense of definition 2.4 (cf. [51).

It should be noted that in the above theorem, it is not assumed
that the domain of A is dense in H. However, if A is a linear operator
in a Hilbert space, the dissipativity of A and the condition R(I - A) =H
imply that D(A) is dense in H (cf. [5]), and the above theorem is reduced

to the well-known results due to Lumer and Phillips [7]. But it is not



known yvet whether or not P(A) is dense in B if A is nonlinear, It

can be shown that [10] the nonlinear contraction semi-group {Tt; t > n}
can bhe extended to a nonlinear contraction - semi-groun on ﬁTZS; the
closure of ﬂ(A). Hence if D(A) is dense in W, {Tt; t > N} can bhe
extended to the whole space H, which is a direct generalization of

a stronglv continuous semi-group of class C, [3]. The condition
R(I-A) = F can also be weakened by assuming R(I—aoA) = 0 for some

a > 0 since the dissipativity of A and the condition P(I -—agA) = N
imply that P(I -2A) = ¥ for alla > 0,

It 1s clear from the above theorem that if A is dissipative
and R(I-A) = H then an equilibrium solution (or a periodic solution)
if it exists, would be stable by the contraction propertv of the
seni-group, However, it is not trivial to relate exponentiallvy
asymntotic stability directly to such a property. If A is linear
and is the infinitesimal generator of a contraction semi-groun
{Tt; t > 0} of class C,, then the familv {e-BtTt; t > 0} for some
B > 0 is a negative contraction semi-group with the infinitesimal
generator A - BI. But when A is nonlinear, the contraction semi-

group {Tt; t > 0} generated by A is nonlinear and so the familv

{e-BtTt; t

v

0} is not, in general, a semi-group since propertv
(iii) in definition 2.1 does not hold. In order to extend theorem
2.1 for the generation of a nonlinear negative contraction semi-
group, we first prove the following lemma. It is noted that for
W

anv two sequences {xn} and {yn} in ¥ such that x *xandy >y
here 3 d K hen Lim = (x,v). Thi

where enotes weak convergence then n*m(xn,vn) = (x,V). s

is due to the fact that a weakly convergent sequence is strongly

bounded which implies that



ey = G| = M v —9) + Gy = o)

< M ]yl + H0 e -G m | = o

Lemma 2.1, Let x(t), y(t) be any two solutions of (1-1)
(in the sense of definition 2,4), Then ]lx(t)—v(t)H2 is different-

iable in t for each t > 0, and

%? ||X(t)-v(t)||2 = JRe(Ax(t)-Av(t), x(t)=v(t)) for each t

Proof. For any fixed t > 0, let h # 0 and fh] < t go that
x(t+h) and v(t+h) are defined. By hypothesis, h L (x(t+h)-x(t)) - Ax(t)
and h-l(v(t+h)-v(t)) ¢ Ay(t) as h » 0, Thus bv the continuitv of inner
product it is easilv seen that

%i? WL (e -y () | = | (D) =v(e) 1|2

= 0 R G (e4h)=x (£ x () =y (£+h) )= (y (E4h)=y (£) , x (t+h) =y (£41))+

(x(t)-v(t),x(t+th)-x(t)) - (x(t)-y(t),v(t+th)-y(t))]

(Ax(t)=Av(t) ,x(£)=v(t)) + (x(t)=-y(t),Ax(t)-Av(t))

2 Re(Ax(t)-Ay(t),x(t)-v(t)).

Hence, |]x(t)-v(t)|'2 is differentiable and (2-3) holds for t > 0, For

t = 0, the above is still valid by taking h > O and h + O in place of

h -+ 0 and by defining %? ||x(t)-y(t)H2 at t = 0 as the right-side limit,
Theorem 2,2, Let A bhe a nonlinear operator with domain D(A)

and range R(A) both contained in a Hilbert space H such that P(I-A) = H,

Then A is the infinitesimal generator of a nonlinear negative contraction

semi-group {Tt; t > 0} with contractive constant 8 on 7(A), if and only

if A 1s strictly dissipative with dissipative constant R,



Proof, WNecessitv: Let A be the irfinitesimal ¢enerator of
{Tt: t > N} such that condition (div)' in definition 2.1 holds for

M=1, Then

T ]

HTtx—Tth2 le for all t > N, (2-4)

l)
Subtracting {|x—v!|“ and then dividing by t >0 in the ahove inecualitv,

(2=~4) becomes

- 2 2 -1, -
t 1(|thX-TtVH"—HX-VH“) <t Y™ 1y Ix=v||? ¢ > 0.
As t ¥ O, we obtain

r -28] lx-v] |

2
HTX—TVH
T e

A

0

Since for anv x, v € D(A), T,%, T v are solutions of (1-1), it follows
bv lemma 2.1 that

Re (Ax=Ay, x-v) < =f(x-v, x-v) x, v € D(A).
Sufficiencv: Let A be strictlv dissinative. Then bv theorem 2.1, A is
the infinitesimal generator of a nonlinear contraction semi-groun
{Tt; t > 0N} on D(A). Moreover, by lerma 2.1

d 2 2
—_ - = Mel(AT x— T o - | -
T ‘]Ttx Ttyll L,e(Awtx ATtv, X Ttv) < 281|Ttx Ttv‘{ t>n

since Ttx, Ttv are solutions of (1-1), Rv integrating the ahove inecual-
itv, we have
7 xem ol 17 g &0 L] |

and the result follows.

Theorem 2.2 is a direct generalization of a theorem in [11]
when ¥ i1s a !llilbert space, since the strict dissinativitv in theoren
2.2 for a nonlinear onerator is a generalization of the strict dissina-
tivitv in the sense of [11] for a linear onerator and the condition

P((1-2)I-A) = ¥ 45 eauivalent to R(I-A) =¥ (cf. [12]).



3. Fouivalent Inner Product

The dissipativitv in theorems 2.1 and 2.2 is defined with
resnect to the original inner nroduct of the space. Since the seri-
groun nropertv is invariant under equivalent norms excent nossihly
the contraction nropertv, the nossibilitv occurs that by defining
other inner nroducts inducine eaquivalent norms on the sare vector
snace the nondissinative operator A could be made dissinative and
thus generates a nonlineaf contraction semi~groun in an eauivalent
Pilbert space ;. In the following, wve shall show that the contraction
semi-grour generated by A in Hl is also a semi-proun generated hv A
in the original space V.,

NDefinition 3.1. Two inner nroducts (¢ 5 «) and (+ s o)

1

defined on the same vector srace H are said to he ecuivalent if and

onlv if the norms | | and ||+]], induced by (+ 5 *) and (- ),

1 1

respectivelv are eauivalent, that is, there exist constants 6, Yy

with 0 < § Y < such that

sHxl] < Hxlly g vlxl] for all x ¢ H,  (3-1)
The Hilkert space 0] eauipned with the inner product (. » ~)1 is said
to be an eauivalent Tilhert snace to " and is denoted bv (7, (¢ » -)1)

or simplv by Hy.

Tmder the equivalent inner product (+ » -)1, the vector snace
I, (- » -)l) is a Hilbert swace if and onlv if the original snace
(, (- » +)) is, since the completeness of one space imnlies the
comnleteness of the other.

Theorem 3.1. Let A be a nonlinear onerator with domain D(A)
and range P(A) both contained in a Filbert space F = (II, (+ » +)) such
that P(I-A) = H, Then A is the infinitesimal generator of a nonlinear

contraction (resp., negative contraction) semi-group {Tt; t > 0} on
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D(A) in an equivalent Hilbert space (¥, (- » -)1) if and onlv if A

is dissinative (resp., strictly dissipative) with respect to ("°)1‘

In this case the familv {Tt; t > 0} is a nonlinear (resp., nonlinear

negative) semi-oroup {Tt; t > 0} on P(A) in the original space Il,
Proof. Since the inner product (. » -)1 i{s eauivalent to

(« 5 «), the space Hl = (1, (« -)l) is a Pilbert space and R(I-A) = Hl.

Hence by considering Hl as the underlying space, all the conditions in

theorem 2,1 (resn., theorem 2.,2) are satisfied, implving the first

assertion. To show the second nart of the theorem, let {Tt; t >0}

be the nonlinear contraction (resp., negative contraction) semi-groun

on U(A) with resnect to the norm \|-||1, that is

IITtx-Tty‘ll < |Ix—y|‘1 (resp., |thx—Ttyl!1 < e_Bt‘lx—yl|1) z,y ¢ P(A).
Pv the equivalence relation (3-1), we have

[zt vl] ¢ 67 Tt vl g 67  Ixmy ]y g v6™ ] eyl ]

1

(resp., l!Ttx—Tty,’ < Y8~ e—Bt]!x-yll) x,v € D(A).

Since the properties of a semi~-groun in definition 2.1 remain unchanged
under eaquivalent norms except for possiblv the contraction propertv, it
follows that {T_; t > 0} is a nonlinear (resp., nonlinear nepative) semi-

t’
group on D(A) with respect to the original norm (with M = yd‘l

).

We next show that an eaquivalent inner product of a given comnlex
Hilbert space H can be characterized by a nositive definite bounded linear
onerator on H., The following theorem is, in fact, an extension of a
theorem in [2].

Theorem 3.2. Let H1 = (H,'(-a-)l) be a coﬁplex Hilbhert snace.

An inner product (-,-)2 defined on the same comnlex vector space T is
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equivalent to the inner product (-,-)1 1f and onlv if there exists

a nositive definite operator S ¢ L(Ul,ﬂl) such that

(x,y)2 = (x, Sy)l fér all x,v ¢ H, (3-2)
where L(Pl,ﬂl) denotes the class of all bounded linear onerators on
1; into Hy.
Proof. Suppose that (-,-)1 and ('s-)2 are equivalent,
Define V(x,y) = (x,y)g, then by the definition of equivalent inner
nroduct, V(x,v) is a sesquilinear functional defined on H; x ¥y and

V(x,y)= V(v,x). Moreover, by the equivalence relation (3-1) between
‘ 'Hz

Ve | = 16uy),) ¢ Hxll, Hvll, < ¥ 1xll Tlvll;  and

L3

11 and [

V(x,x) = (x,x), > 6zl|x|l? .
2 = 1
I'ence by the Lax~Milgram theorem (cf. [12]) there exists a tounded linear
onerator S on Hy such that
(x,¥), = V(x,v) = (x,5v), for all x,v € H.

The operator S is positive definite on Hl since

(x,5%), = (x,%), 3 67| |x|]? for all x € F.
1 2 = - 1
Conversely, let S € L(Hl,ﬂl) be a nositive definite onerator satisfyding
(3-2). Then (x,y)2 = (x,Sy)1 igs linear in x. It is known (e.g., see [4])

that a nositive definite operator on I is self-adjoint which imnlies that

(x,v), = (x,5y); = (5x,v); = -(-37;;_)-2 X,y e T,
Bv the positivity of S, we have
(x,x)2 = (x,Sx)1 > Slllxlli for some 61 > 0,
which shows that (x,x)2 ¥ 0 if x #.0. Thus (-a-)z'defines an inner
product on H, Moreover, the boundedness of 5 implies that “xllg = (x,Sx)l;
< |1s]| llx]}%. Hence (.5.), defines an equivalent inner product of

(-,-)l which proves the theorem,
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The nonlinear contraction and negative contraction semi-
groun {Tt;t > 0} generated by A in the equivalent Hilbert space "y
in theorem 2,1 and theorem 2.2 resnectively satisfies for anv x e D(A)

and t > 0

thx
( el z)1 = (ATtx, z)1 for everv z ¢ H,. (3-3)

However, it is not obvious that the same equality holds for the inner
product (.,.). We shall show with the result of theorem 3.2 that (3-3)
holds with respect to (ess).

Theorem 3.3. Let A be the infinitesimal penerator of a nonlinear
contraction (resp., negative contraction) semi-group {Tt; t > 0} on D(4)
in an equivalent Hilbert space H, = (¥, (-,-)1). Then A is the infinitesi-
mal generator of a nonlinear (resp., negative) semi-sroup {Tt; t > N} on
the same domain D(A) in the original Hilbert space H = (H, (e¢5)).

Proof. By the equivalence relation between the two inner pro-
ducts (+,¢) and (-,-)1, the sesquilinear functional V(x,v) = (x,v)
defined on the product space Hl x Hy satisfies all the hypotheses in
the Lax-Milgram theorem. Thus there exists a bounded linear operator

S defined on all of Hy such that

(x,y) = V(x,y) = (x,Sy)1 for all x, y ¢ W, (3-4)

Bv hypothesis, A generates the semi-groupn {Tt; t > 0} in Hl so that

1im
t+0

It follows from (3-4) and (3-5) that for x € P(A) and z ¢ H

t-l(Ttx—x, z)l = (Ax, z)1 for every z € H, (3+5)

lim =~

1 1lim
£40 t (Ttx—x, z)

-1
t40 ¢ ‘(Ttx-x, Sz)1 e _(Ax,Sz)1 = (Ax,z),

which shows that A 18 the infinitesimal penerator of the semi-groun
{Tt; t > 0} on D(A) in the space N. The fact that {Tt; t > 0} remains

as a semi-group in ¥ is that the semi-group property is invariant under
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equivalent norms except for possibly the contraction property. Since

{T,; t > 0} is a contraction semi-group in H, and []-1] and il.]ll
are equivalent, we have by the relation (3-~1)
Nt x-T,y|| g v/8 |[|x=y]] %,y € D(A)
(resp., ||Tx-T v|| 5 v/6 e B =y || x,v € D(A))

and the theorem is proved.

Corollary. Let the operator A appearing in (1-1) be the
infinitesimal generator of a nonlinear contraction (resp., negative
contraction) semi-group {Tt; t > N} on D(A) in the space Hy, = (1, (e2)7)
so that for anv x e D(A), Ttx is the unique solution of (1-1) with
ToXx = X. Then Te¢x is also the unique solution of (1-1) with Tox = x in
the space H=(1l, (+»+)) where (.,.)1 and (ss.) are equivalent.

Proof. Since (3-4) and (3-5) in the proof of the above theorem

hold for anv x € P(A) and z ¢ 1I, we have for any x ¢ P(A) and t >0

lim -1 lim -1
0 h (Tt+hx—Ttx,z) = 10 h (ThTtx-Ttx, Sz)l = (ATtx, Sz)1
= (ATtx, z) for evéry z e H,

which implies that T x is a solution of . (1-1) in the space (F,(+s+))
since all the other pronerties in definition 2.4 remain unchanged under
equivalent norms,

4, FExistence and Stability

In this section, we shall estahblish some criteria for the existence
and the stability of solutions of (1-1) through the construction of a

Lvapunov functional.
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Definition 4.1. An equilibrium solution of (1-1) is an

element xe in D(A) satisfying (1-1) (in the weak topologv) such that

for any solution x(t) of (1-1) with x(0) =X,

||x(t)-xe|| = 0 for all t > 0.

It follows from the above definition that if x(t) is a solution
of (1-1) with x(0) = x, then it is an equilibrium solution if and only
if Ax(t) = 0 for all t > 0. To show this, let Ax(t) = 0 where x(t) is
a solution of (1-1). Then by definition 2.4 the strong derivative dx(t)/dt
= Ax(t) = 0 exists and is trongly continuous except at a countable numher
of values t, But x(N) = x and since any solution of (1-1) is strongly
continuous it follows that x(t) = x for all t > 0, Conversely, let x(t)
be an equilibrium solution of (1-1). Then

1lim
h>0

for every z € W and every t > N, Since x(t) is a solution of (1-1), x(t)

1im

~1
ho0 h ~(0,z) =0

(Ax(t),2) = (dx(t)/dt,z) = S0 h"lix(erh)-x(t),z) =
e D(A) and Ax(t) € H for each t > 0; thus the orthogonality of Ax(t) to
every z in W implies that for each t > 0, Ax(t) = 0,

Definition 4.2. An equilibrium solution (or any unperturbed solu-

tion) is said to be stable (ﬁith respect to initial perturbations) if

given any € > 0, there exists a § > 0 such that

le-xe!| <8 dmplies |[x(t)-x_ || < ¢ for all t > 0;
X, is said to be asymptotically stable if
(1) it is stable; and
) 08 | |x(0)-x,]] = 0
where x(t) is any solution of (1-1) with x(0) = x ¢ D(A). If there
exists positive constants M and R such that |

(11’ I!x(t)-xe!‘ < Me-8t1|x-xe|] for all t > 0,

then X is called exponentially asymptotically stable.



15

Definition 4.3, Let x(t) be a solution of (1-1) with x(0)=x.
A subset D of H is said to be a stability region of the equilibrium
solution X, if for any € > O there exists a § > 0 such that
x € D and ||x—xell < § dimply !lx(t)-xell <e for all t > 0,

Definition 4.4. Let W be a Hilbert space, and let V(x,y) be

a complex-~valued sesquilinear functional defined on the product snace
BExH (i.e. VQxlxl +w12x2,y) =c11V(x1,y) +412V(x2,y) and V(x,81y1+82y2)=
=§lv(x,y1) + §2V(x,y2)). Then V(x,y) is called a defining sesquilinear

functional if it satisfies the following conditions:

(1) V(x,y) = V(y,x); (symmetry)
(11) |v(x,y)| 2 vlIx|| ||ly|l] for some y > 05 (boundedness)

(1i1) v(x,x) > 6|‘xll2 for some & > 0. (positive definiteness)
Note that condition (ii) implies that V(x,y) is continuous both in x and
in v.

Definition 4.5. Let V(x,y) be a defining sesquilinear functional,

Then the scalar functional v(x) defined by v(x) = V(x,x) is called a
Lvapunov functional.
It follows directly from the above definition that there exist

real numbers 61, Yy with 0 < 61 < Yy < » guch that

8, ||x|l2 < vx) < Yq ||x||2 for all xeH,
Lemma 4,1. Let {xn} and {yn} be two sequences in I = (H, (-s¢))

w
such that x, » x and Y, v asn-> e, Then

1im

oo V(xn,yn) = V(x,v) X,v € H,

Proof, By definition of V(x,y), all the conditions (i.e.
sesquilinearitv, boundedness and positivity) in the Lax~-Milgram
theorem are satisfied. Thus, there exists a bhounded linear operator

S such that
V(x,y) = (x, Sy) for all x, v € H, (4-1)
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Since a weaklv convergent sequence is stronglvy bounded so that
]lxnll < » for all n, it follows by the sesquilinearity of V(x,y)

and by the relation (4-1) that

W,y - Yoy = SRS IR CRRO T ROY

1

s ,,f.’l | ,SCy =y ]| + iiz I(x,87)- (x, S¥)|
14

<] IsI] lyevl] - o

Lemma 4.2. For any pair of solutions x(t), v(t) of (1-1)

Y(x(t) - y(t)) = 2Re V(Ax(t) - Ay(t), x(t) - v(t)) (4=2)
where ¥(z(t)) denotes the derivate of v(z(t)) with respect to t,
Proof. BRv the sesquilinearity of V(x,v) it is easily seen

that

V(x-v, xty) + Vixty, x~-y) = 2(V(x,x) - V(y,v)) for any x,v e F,

and by the symmetry of V(x,vy), the above equality implies that

v(x) » v(y) = V(x,x) - V(y,v) =-% (V(x=y,x+y) + V(x-y,x+y))=Re V(x-y,x+y).

Pence for any fixed t > 0 and for any number h

B [ (x (e4h)-y (£+0) )=v (x (£)-y (£)) 1=Re V(h™ (x(e+h)=x(£))=h (v (e+h)-y (),
x(t+h)+x(t)-y (t+h)=-y (t)).
Since h-l (x(t+h)-x%(t)) ¥ Ax(t) and x(t+h) + x(t) as h + 0, (similarly

thegse two limits hold by replacing x by y) we have by lemma 4.1, as h > 0

& v(x(B)-y()) = Re V(ax(t)=Ay(£),x(t)-y(£)).
Thus (4-2) is proved for t > 0, For the case of t = 0, we take h > 0
and let h 4+ 0, Therefore (4~2) holds for all t > 0 by defining

T(x(0)-v(0)) as the right-side limit at t = 0,
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Lemma 4,3, Let H = (¥, (+s+)) be a Wilbert space and let
V(x,v) be a sesquilinear functional defined on I' x H, Then V(x,v)
defines an equivalent inner product of ( +s+) if and onlv if V(x,v)
is a defining sesquilinear functional,
Proof. Let (x,y)1 = V(x,v) be an equivalent inner nroduct
of (+5+). It can easily be shown by the definition of an equivalent
inner product that (x,y)l satisfies all the properties of symmetry,
boundedness and positive definiteness. Thus V(x,v) is a defining
sesquilinear functional. Conversely, if V(x,v) is a defining sesqui-
linear functional then the properties of sesquilinearity, symmetrv and
poéitive definiteness imply that (x,y)1 = V(x,y) is an inner product and
together with the boundedness of V(x,y), (-,-)1 is equivalent to (sss).
Theorem 4,1. TLet A be a nonlinear operator with domain T(A)
«and range F(A) both contained in a Pilbert space H = (V,(s+y+)) such
that R(I~-A) = H, Then A is the infinitesimal generator of a nonlinear
contraction (resp., negative contraction) semi-groun {Tt; t > 0} on D(A)
in an equivalent Hilbert space W; = (H,(-,-)l) if and onlv if there
exists a Lvapunov functional v(x) = V(x,x) such that
¥(x-y) = 2Re V(Ax-Ay, x%-y) < 0 x,v € D(A) (4-3)
(resp., V(x~y) = 2Re V(Ax-Ay, x~y) < —28||x-y“2 for some B > 0)
where V(x,y) is the defining sesquilinear functional of v(x) on H x H,
Proof. We prove the negative contraction case, the contraction
case follows by taking B8 = 0, Tet A be the infinitesimal pgenerator in
the equivalent Hilbert space Hl' Then by theorem 3.1, A is strictly
dissipative with respect to (-,-)1, that is

Re(ax-ay, x-y); £ -8 |lx=y||] (8 > 0 x,v e D).

Define V(x,y) = (x,y);, then by lemma 4.3 V(x,y) is a defining sesquilinear
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functional defined on H x H. FHence the scalar functional v(x) = V(x,x)=
- (x,x)1 is a Lyapunov functional on the space H, By lemma 4.2, for any
x, v £ D(A)

v(Ttx-Tty) = 2ReV(ATtx—ATty, Ttx~Ttv) (t > 0.

In particular, for t = 0

V(x~-y) = 2ReV(Ax-Ay, x-y) x, v £ D(A),

Thus the strict dissipativity of A with respect to (s5:). and the

)1
equivalence relation (3-1) imply that

. 2 2

V(x-v) = 2Re(Ax-Ay, x--y)l < —281‘|x-y|!1 < =28 |x=y |

9
where B = 816“. -
Conversely, supnose that there exists a Lvapunov functional

v(x) = V(x,x) such that (4-3) holds, where V(x,v) is a defining
sesquilinear functional defined on ¥ x H, By lemma 4,3, the functional
(x,y)1 = V(x,y) defines an equivalent inner product to («».:). Hence,

by hynothesis (4-3) and the equivalence relation (3-1)

2

| xy]12

Re(Ax-Ay, %-y), = ReV(Ax-Ay, x-y) g -Bllx-y{IZ;-BY
wvhich implies that A 1s strictly dissipative with respect to (-a-)l. The
result follows by applying theorem 3.1,

Théorem 4,2, Let the nonlinear operator A anpearing in (1-1) be
such that R(I-A) = H, If there exists a Lvapunov functional v(x) = V(x,x),
vhere V(x,y) is a defining sesquilinear functional defined on H x P such
that for any x, v € D(A)

(1) V(x~-y) = 2ReV(Ax-Av, x-v) < 0 or

fiAn

(11) ¥(x-y) = 2ReV(Ax-Ay, x-y) -zel}x-yllz (8 > 0)

[ Ea

Then, (a) for any x e D(A) there exists a unique solution x(t) of (1-1)

with x(0) = %, (b) any equilibrium solution X, (or any unperturbed



19

solution such as periodic solution), if it exists, is stable under
the condition (1) and is asvmntotically stable under the condition
(ii), and (c¢) a stability region of Xy is D(A) which can he extended
to D(A), the closure of D(A). If, in addition, 0 € D(A) and A0 = 0O,
then the zero vector is an eqdilibrium solution, called the null solu-
tion, of (1-1) which is stahle or asymptoticallv stable according to
(1) or (ii), respectively,

Proof. By hypothesis and applying theorem 4,1, A is the infinite-
simal generator of a nonlinear contraction semi-group on P(A) in an
equivalent space Hy = (wm, (-,-)1) under the condition (i) and is the

infinitesimal generator of a nonlinear negative contraction semi-group

on V(A) in Hy under the condition (ii), where the norm |

1

ll induced

by (-s-)1 satisfies relation (3-1)., By theorem 3,3, A is the infinitesimal
generator of a nonlinear semi~-groun {Tt; t > 0} on DP(A) in 17 such that

under the condition (i)

[Tty 1] g v 67 Ix=y|] %,y e D)
and under the condition (ii)

1 =

rgeterl] s v 670 e lxyll xy e D) (e 3 0.

Since for any x ¢ U(A), T,x is the unique solution in H; with T x=x, it
follows from the corollary of theorem 3.3 that Ttx is also the unique
solution in H with Tox=x. By the semi-grounp provertv of {Tt; t > 0} in

H, we have under the conditions (i) or (ii)

[Irgexg | g v 67  lxexg || ez
or
Nrgex || g v 6P lxmn || (e 20,
which shows that the equilibrium solution X,» if it exists, is stable

and asymptotically stable, respectively. WNote that Ttxe=xe for all
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t > 0. Since the contraction semi-group {Tt; t > 0} on D(A) in the
ll-tovoloz.v (cf. [10]),

, can be extended to TRy 0 the ||

the same is true for the semi-group {Tt; t 2 0} on D(A) in the snace 11,

space N

This is due to the fact that the closure of D(A) in the !I-Ill-tonology

i{s the closure of D(A) in the |

!-tonology because of the equivalence

relation between these two norms. FPence the results (a), (b) and (¢)

are proved., The stability nroperty of the null solution follows from (b).
The purpose for the construction of a TLvapunov functional can

be demonstrated as follows: ILet v(x) = V(x,x) be a Lvapunov functional

such that for somea > 0

FE(O-y() < =1 |x-y@® |17 (€20 (44
for anv two solutions x(t), v(t) of (1-1), where V(x,v) is a defining

sesquilinear functional. By lemma 4-~3, the functional

(X,Y)l = V(x,y) x, yell
defines an equivalent inner product to (+ss+)., Since

v(x) = V(x,x) = (x,x)1 < y"xllz for all x ¢ ¥,
it follows from (4-4) that

T(x(£)-v(t)) < a/y v(x(t)-y(t))==2av(x(t)-y(t)) (2x =z aly).

Integrating the above inequality with respect to t and note that v(x)al{xl{i,

-2)t
e

x(e)=y () |12 < |]x(0)=y(0) || (t 2 0).
1 1

By the equivalence relation (3-1), the above inequality implies that

x(®)-y(e) |]? < 1762 ||x<t>-y<c>||i < (v/8) 2™ |x(0y-y () | | 2

which is the same as

| x(0)-y () |] < v/6 €| |x(m)=y(0) ] for t > 0.
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Hence, if an equilibrium solution X, (or anv unperturbed solution) exists

then by choosing v(0) = X, in the ahove ineaualitv, we have

IxCe)=x || € v/5 el Ixtm-x || for all t 2 0

which shows that the equilibrium solution X, is exponentially asymptot-
icallv stable if o > 0, and is stable if a = 0,

The importance of theorems 4.1 and 4.2 is the fact that the
existence of a Lyapunov functional satisfying (4-3) alone does not
guarantee the existence of a solution to (1-1) and in general, it is
rather comnlicated to prove such solutions exist. VYowever under the
additional assumption that R(I-A) = H the existence of a solution with
any initial element x & D(A) is assured, This assurance makes the

stability of solutions of (1-1) meaningful.
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List of Symbols

A nonlinear operator

D(A) NDomain of A

5TX7 closure of D(A)

H llilbert space with inner p roduct («,.)
Hy Hilbert space with inner product (°9°)1
I identity operator

M positive number

R(A) range of A

S bounded linear operator

{Tt; t > 0} family of nonlinear semi-group

Vx,y) defining sesquilinear functional
v{(z(t)) derivative of v(x(t)) at point t > 0
Xy, ¥, Z elements of H

X, equilibrium solution

2, By, ¥y 8, A real numbers

> strong convergence

5 weak convergence

(-,-)1 equivalent inner product to (es+)



